Electronic Component Testing of Satellites at High Altitudes

Electronic Components of Satellites behave differently in outer space as compared to how these behave at sea level. How do you know that your satellite will survive outer space? How do you confirm that your circuit boards will function properly at higher altitudes? There is only one way to find out, and that is to test and validate your design.

Electronic components are part of every satellite. Even Sputnik, the first satellite in space, had electronic components, such a transponder, etc... Electrical circuits create heat during operation this happens because electrons travel through electrical conductors which create friction which in turn create heat. The heat created by any electrical circuit quickly dissipates through convection. Convection is the heat transfer due to bulk movement of molecules such as liquids or gasses.

We take convective cooling for granted here on earth. However, convection is almost non-existent at higher altitudes. As the altitude increases, the air pressure decreases. Air pressure decreases because less air molecules are present. Less air molecules means less heat can escape through convection. Hence other cooling system and methods have to be developed and tested in order to keep the electronics running. Many electronic components on a satellite will only properly function if they are maintained within a specified temperature range.

We were exited to have been contacted by one of the developers of Cube Sat asking for our help on testing their Satellite components. What you are looking at is a clear acrylic vacuum chamber, 14 inch inside dimensions, hinged side door, front loading. This chamber can be placed on a table top and accessed by opening the front door.

However, this vacuum chamber is different from our standard built vacuum chambers. This chamber has the vacuum valve, the venting valve, the vacuum gauge moved to the top wall. Conversely, a Two-Pair, Type J, Thermocouple Vacuum Feedthrough is placed on top left corner of the side wall. An 12 wire, 18 Gauge Vacuum Feedthrough has been placed on the top right corner of the side wall. A Multipin, 25 pin is present on the lower left corner. Finally, an NW40 Port is located on the lower right corner. This NW40 port is used to connect a high vacuum pump that will generate a vacuum high enough in order to simulate the absolute pressures of Low Earth Orbit.

While the chamber is under Vacuum, Cube Sats will be placed inside for testing. Electrical connections are run from the outside and connected to the CubeSat inside. This is possible because these Electrical Vacuum Feedthroughs are specially built components what allow the user to connect to the CubeSat from the outside without compromising the vacuum.

If you have a need for a custom vacuum chamber with Vacuum Feedthroughs, feel free to Contact Us anytime.

Similar Items

We treat our customers well by Over-Delivering on our Promises (reason why we are Highly Rated on Google My Business). There is a tremendous amount of valuable resources and information regarding vacuum systems and vacuum technology; check them out by clicking on the links below.

Vacuum Oven Systems
Vacuum Ovens are vacuum chambers and ovens combined in one system. Vacuum ovens are necessary during processes which require the specimen to be subjected to a hypobaric and hyperthermal environment. Our Vacuum Oven Systems enable to you run a complete vacuum vs time and temperature vs time profile. We also carry portable vacuum oven systems and custom vacuum oven systems.
Ethernet Vacuum Feedthroughs
Ethernet Vacuum Feedthroughs are Vacuum Rated Ethernet connectors that enable you to run ethernet cables into your vacuum chamber. Simply connect your ethernet connector to the outside of the vacuum chamber and another ethernet cord from the inside and run it into your part present inside your vacuum chamber.
Our Work: Bubble Leak Testing System with a Dry off Sink used for Leak Testing Large Bags
How do you leak test Large Food Bags? This is the same question a Large Food and Beverage Processor had asked themselves because they had need for a bubble leak testing system which could be used to detect presence of leaks in their large bags. Their requirements were to test several sized bags with the largest bag being 24 inches Wide by 12 inch Deep by 9 inches High. In addition to the bubble leak testing system, they also needed a way to dry the bags after the test.
Related Articles: Dry and Wet Vacuum Leak Quality Testing of Sachets Filled with Powder or Liquid
This article will talk about how to test the seal integrity of food bars. You will understand what you will need to do in order to ensure good seal quality. This article covers the seal integrity testing of Breakfast bars, Chocolate candy bars, Crisped rice bars, Energy bars, Granola bars, Health bars, Protein bars, Fruit and Nut Bars, Meal Replacement Bars or any other food bar sealed with a flow wrapper.