Storage of Sensitive Sensors in Nitrogen inside a Vacuum and Pressure Chamber

There are many components which react adversely to air. Silicon Wafers are one example. Other examples include Silicon Based Sensors or Gallium Based Detectors. Conversely, medical devices and products may also have a need to be stored either in a vacuum environment or an oxygen free environment.

This particular system was envisioned, designed, and made for a Medical Device Manufacturer who also builds Sensitive Sensors. Our Acrylic Vacuum Chamber had to be a multi-use chamber. The requirements were for our chamber to have full vacuum capabilities of less than 5 Torr and capable of 5 psi of overpressure. The chamber was used to vacuum store medical device components between manufacturing process steps between batches. Conversely, there was also a need to store Silicon Based Nano sensors inside a pressurized chamber filled with nitrogen only. The vacuum chamber was evacuated several times and filled with nitrogen. Finally, the Silicon Based Nano-sensors were placed into the chamber. Finally, the chamber was now pressurized up to 5psig. The overpressure prevented any gas permeation from the outside towards the inside because the air was pushed out. This eliminated the risk of contamination.

What you are looking at is a small vacuum chamber (about 12 inch wide x 12inch deep x 6 inch high) that is able to go to 5 Torr of absolute pressure during vacuum operations and 5 psi of positive pressure during overpressure nitrogen storage. You can see the thumb screws that are used to clamp the O-Ring against the acrylic chamber in order to keep an air tight seal. You can also see the vacuum dial gauge and vacuum valves. It’s a bit harder to see, but there is an Oil Free Vacuum Pump present below the vacuum chamber. There is also another valve that is present on the bottom wall of the chamber. This system is often used as a multi purposed system because it allows vacuum and pressure applications simultaneously.

Are you looking to store your products inside a vacuum or an oxygen free chamber? What about overpressure nitrogen storage? Contact Us today to discover how we can be of service to you.

Some of our Popular Items

Our clients prefer to work with us because we are Experts in Custom Fabrication (especially Polymer Fabrication). Check out some of our other items we carry that you can combine/integrate with your systems or projects.

Helium Leak Testing Systems
Helium Leak Testing Systems are instruments which detect leaks in specimen by detecting present of helium. Helium is used as a tracer gas to detect and quantify a leak. For example, a test specimen is filled with helium and placed into a test chamber, a vacuum is pulled and a helium mass spectrometer is connected to the test chamber. If helium is detected, it is due to the fact that it has escaped from the specimen through a leak path. Helium Leak Testing is a qualitative and quantitative method of detecting product leaks.
Rotary Vane Vacuum Pumps
Rotary Vane Vacuum Pumps are the most widely used vacuum pump in the industry. When it comes to performance at a reasonable price, rotary vane vacuum pumps are the way to go. Many Rotary Vane Pumps can achieve 2 to 5 milliTorr vacuum rating at a good volumetric flowrate (2 to 20 CFM) at a very reasonable price (hundreds to a few thousand dollars)
Our Work: Vacuum Storage of Chemicals that interact with Stainless Steel
There are countless chemicals and metals that interact with Steel or Stainless Steel. According to our investigation, Gallium, Cadmium, Beryllium, and Zinc are some examples of materials which will interact with Steel or Stainless Steel during vacuum Storage.
Related Articles: Anatomy of the Pressure Decay, Vacuum Decay, and Force Decay Curve
How do you know that you have a good part during your leak test? In order to understand your leak test, you must first understand the Test Decay Curve and what it tells you about your test specimen. There is a certain way that a test specimen behaves during the leak test.